Skip to main content

AutoML for Predictive Maintenance: One Tool to RUL Them All

  • Conference paper
  • First Online:
IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning (ITEM 2020, IoT Streams 2020)

Abstract

Automated machine learning (AutoML) deals with the automatic composition and configuration of machine learning pipelines, including the selection and parametrization of preprocessors and learning algorithms. While recent work in this area has shown impressive results, existing approaches are essentially limited to standard problem classes such as classification and regression. In parallel, research in the field of predictive maintenance, particularly remaining useful lifetime (RUL) estimation, has received increasing attention, due to its practical relevance and potential to reduce unplanned downtime in industrial plants. However, applying existing AutoML methods to RUL estimation is non-trivial, as in this domain, one has to deal with varying-length multivariate time series data. Furthermore, the data often directly originates from real-world scenarios or simulations, and hence requires extensive preprocessing. In this work, we present ML-Plan-RUL, an adaptation of the AutoML tool ML-Plan to the problem of RUL estimation. To the best of our knowledge, it is the first tool specifically tailored towards automated RUL estimation, combining feature engineering, algorithm selection, and hyperparameter optimization into an end-to-end approach. First promising experimental results demonstrate the efficacy of ML-Plan-RUL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/tornede/IoTStreamPdM2020Workshop.

References

  1. Chen, B., Wu, H., Mo, W., Chattopadhyay, I., Lipson, H.: Autostacker: a compositional evolutionary learning system. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, 15–19 July 2018, pp. 402–409 (2018)

    Google Scholar 

  2. Christ, M., Braun, N., Neuffer, J., Kempa-Liehr, A.W.: Time series feature extraction on basis of scalable hypothesis tests (tsfresh - a python package). Neurocomputing 307, 72–77 (2018)

    Article  Google Scholar 

  3. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20, 55:1–55:21 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Erickson, N., et al.: AutoGluon-tabular: robust and accurate AutoML for structured data. CoRR abs/2003.06505 (2020)

    Google Scholar 

  5. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F.: Efficient and robust automated machine learning. In: Advances in Neural Information Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, Montreal, Quebec, Canada, 7–12 December 2015, pp. 2962–2970 (2015)

    Google Scholar 

  6. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  7. Gijsbers, P., Vanschoren, J.: GAMA: genetic automated machine learning assistant. J. Open Source Softw. 4(33), 1132 (2019)

    Article  Google Scholar 

  8. Gugulothu, N., Tv, V., Malhotra, P., Vig, L., Agarwal, P., Shroff, G.M.: Predicting remaining useful life using time series embeddings based on recurrent neural networks. CoRR abs/1709.01073 (2017)

    Google Scholar 

  9. Hutter, F., Kotthoff, L., Vanschoren, J. (eds.): Automated Machine Learning - Methods, Systems, Challenges. The Springer Series on Challenges in Machine Learning. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-05318-5

    Book  Google Scholar 

  10. Kanter, J.M., Veeramachaneni, K.: Deep feature synthesis: towards automating data science endeavors. In: 2015 IEEE International Conference on Data Science and Advanced Analytics, DSAA 2015, Campus des Cordeliers, Paris, France, 19–21 October 2015, pp. 1–10 (2015)

    Google Scholar 

  11. Kaul, A., Maheshwary, S., Pudi, V.: AutoLearn - automated feature generation and selection. In: 2017 IEEE International Conference on Data Mining, ICDM 2017, New Orleans, LA, USA, 18–21 November 2017, pp. 217–226 (2017)

    Google Scholar 

  12. Khelif, R., Chebel-Morello, B., Malinowski, S., Laajili, E., Fnaiech, F., Zerhouni, N.: Direct remaining useful life estimation based on support vector regression. IEEE Trans. Ind. Electron. 64(3), 2276–2285 (2017)

    Article  Google Scholar 

  13. Khurana, U., Turaga, D.S., Samulowitz, H., Parthasrathy, S.: Cognito: automated feature engineering for supervised learning. In: IEEE International Conference on Data Mining Workshops, ICDM Workshops 2016, Barcelona, Spain, 12–15 December 2016, pp. 1304–1307 (2016)

    Google Scholar 

  14. Mohr, F., Wever, M., Hüllermeier, E.: ML-Plan: automated machine learning via hierarchical planning. Mach. Learn. 107(8), 1495–1515 (2018). https://doi.org/10.1007/s10994-018-5735-z

    Article  MathSciNet  MATH  Google Scholar 

  15. Nectoux, P., et al.: Pronostia: an experimental platform for bearings accelerated degradation tests (2012)

    Google Scholar 

  16. Olson, R.S., Moore, J.H.: TPOT: a tree-based pipeline optimization tool for automating machine learning. In: Automated Machine Learning - Methods, Systems, Challenges, pp. 151–160 (2019)

    Google Scholar 

  17. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Ran, Y., Zhou, X., Lin, P., Wen, Y., Deng, R.: A survey of predictive maintenance: systems, purposes and approaches. CoRR abs/1912.07383 (2019)

    Google Scholar 

  19. de Sá, A.G.C., Freitas, A.A., Pappa, G.L.: Automated selection and configuration of multi-label classification algorithms with grammar-based genetic programming. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 308–320. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_25

    Chapter  Google Scholar 

  20. Saxena, A., Goebelt, K.: Phm08 challenge data set. vol. NASA Ames Prognostics Data Repository. NASA Ames Research Center, Moffett Field, CA (2008). http://ti.arc.nasa.gov/project/prognostic-data-repository. Accessed 20 May 2020

  21. Saxena, A., Goebelt, K.: Turbofan engine degradation simulation data set. vol. NASA Ames Prognostics Data Repository. NASA Ames Research Center, Moffett Field, CA (2008). http://ti.arc.nasa.gov/project/prognostic-data-repository. Accessed 20 May 2020

  22. Saxena, A., Goebel, K., Simon, D., Eklund, N.: Damage propagation modeling for aircraft engine run-to-failure simulation. In: International Conference on Prognostics and Health Management, pp. 1–9. IEEE (2008)

    Google Scholar 

  23. Susto, G.A., Schirru, A., Pampuri, S., McLoone, S.F., Beghi, A.: Machine learning for predictive maintenance: a multiple classifier approach. IEEE Trans. Ind. Inform. 11(3) (2015)

    Google Scholar 

  24. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-Weka: combined selection and hyperparameter optimization of classification algorithms. In: The 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA, 11–14 August 2013, pp. 847–855 (2013)

    Google Scholar 

  25. Wever, M., Mohr, F., Hüllermeier, E.: Automated multi-label classification based on ML-Plan. CoRR abs/1811.04060 (2018)

    Google Scholar 

  26. Wever, M.D., Mohr, F., Hüllermeier, E.: ML-Plan for unlimited-length machine learning pipelines. In: ICML 2018 AutoML Workshop (2018)

    Google Scholar 

  27. Wever, M.D., Mohr, F., Tornede, A., Hüllermeier, E.: Automating multi-label classification extending ML-Plan. In: ICML 2019 AutoML Workshop (2019)

    Google Scholar 

  28. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6), 80–83 (1945)

    Article  Google Scholar 

  29. Yang, C., Akimoto, Y., Kim, D.W., Udell, M.: OBOE: collaborative filtering for AutoML model selection. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, 4–8 August 2019, pp. 1173–1183 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by the German Research Foundation (DFG) within the Collaborative Research Center “On-The-Fly Computing” (SFB 901/3 project no. 160364472), the German Federal Ministry of Economic Affairs and Energy (FLEMING project no. 03E16012F), and the German Federal Ministry of Education and Research (ITS.ML project no. 01IS18041D). The authors gratefully acknowledge support of this project through computing time provided by the Paderborn Center for Parallel Computing (PC\(^2\)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanja Tornede .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tornede, T., Tornede, A., Wever, M., Mohr, F., Hüllermeier, E. (2020). AutoML for Predictive Maintenance: One Tool to RUL Them All. In: Gama, J., et al. IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning. ITEM IoT Streams 2020 2020. Communications in Computer and Information Science, vol 1325. Springer, Cham. https://doi.org/10.1007/978-3-030-66770-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66770-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66769-6

  • Online ISBN: 978-3-030-66770-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics